C++ source

Dr. Vladimir V. Chekhov

Personal data

Photo Institution personal page

Born: 1968/07/20, Donetsk (USSR, Ukraine)

Contact info


Educational background

MSc in Applied Mathematics and Physics (1994, MIPT — Moscow Institute of Physics and Technology)

PhD in Strength of Aircraft Structures (1998, MIPT)
(thesis "Selection of Rational Parameters for Physically Nonlinear Aircraft Structures",
scientific adviser — Dr. S.V. Selyugin)

PhD degree attested in Ukraine, in Design of Aircraft Structures (2003, Kharkiv Aviation Institute)

Professional experience

1985–1986 Donetsk Institute for Physics and Engineering (Ukrainian Academy of Sciences). Laboratory of computational mathematics. Laboratory assistant.
1986–1994 MIPT. Dept. of Aeromechanics and Flying Engineering (Zhukovsky, Russia). Student. (1987–1989 Soviet Army soldier).
1994–1997 MIPT. Graduate student.
1994–1995 Moscow Aviation Institute, branch in Zhukovsky. Assistant professor (off-hour work).
1993–1999 TsAGI — Central Aerohydrodynamic Institute (Zhukovsky, Russia). Static/thermal strength division. Research Engineer (1993–1997 off-hour work).
1999–2000 TsAGI. Research Fellow.
2001–2006 Yalta Management University (Yalta, Ukraine). Dept. of Informatics. Associate professor.
From 2006 Taurida National University (Simferopol, Ukraine). Dept. of Informatics. Associate professor (2011–2014 off-hour work). At present it is called "Taurida Academy of Crimean Federal University".
From 2011 S.P.Timoshenko Institute of Mechanics (Kyiv, Ukraine). Doctoral candidate.

Teaching experience

Taught a series of courses in the areas of numerical methods, mathematical programming, some programming languages, AI basics, system simulation.


National scientific grant from Russian Academy of Sciences for gifted young scientists (2000).

Research area and principal publications

Optimal structural design

Journal Articles

  1. S.V.Selyugin, V.V.Chekhov. Numerical analysis of rational parameters of physically non-linear structures (in Russian) // Troudy TsAGI, 1998, no 2632, pp. 85–95.
  2. S.V.Selyugin, V.V.Chekhov. Multimaterial design of physically nonlinear structures // Structural and Multidisciplinary Optimization, vol. 21 issue 3 (2001), pp. 209–217
  3. M.P.Tepenitsin, M.N.Mouratovskaya, V.V.Chekhov. Selection of rational parameters for load-bearing elements of structure of engine air channel (in Russian) // Troudy TsAGI, 2001, no 2651, pp. 123–126.
  4. V.V.Chekhov. On optimality of physically nonlinear fully-stressed structures // Mechanics of Solids ISSN 0025-6544, 2002, vol. 37, no 6, pp. 105–113.
    (source in Russian: Чехов В.В. Об оптимальности физически нелинейных полностью напряжённых конструкций // Механика твердого тела, № 6, 2002, с. 123–133)

Conference Proceedings

  1. S.V.Selyugin, V.V.Chekhov Optimal physically nonlinear structures made of several materials // Proceedings of WCSMO-3, Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo, USA.
  2. V.V.Chekhov Investigation of rational airframe structural parameters // Proceedings of WCSMO-3, Third World Congress of Structural and Multidisciplinary Optimization, May 17–21, 1999, Buffalo, USA.
  3. V.V.Chekhov Optimality condition for physically nonlinear fully stressed designs and its use in rational design // Proceedings of International conference of young scientists and engineers "Actual problems of aerospace science and tecknology", Zhukovsky, Moscow, Russia, May 23–26, 2000, pp. 227–228.

Programming of the Finite element method

Journal Articles

  1. V.V.Chekhov Tensor-based matrices in geometrically non-linear FEM. // International Journal for Numerical Methods in Engineering, vol. 63 issue 15 (2005), pp. 2086–2101.
  2. V.V.Chekhov Efficiency of the pattern implementation of numerical integration in the finite element method. // Zaporizhzhya National University Herald, 2013, No 1, pp. 111–117.

Program codes

    A C++ template metaprogram for numerical integration over n-dimentional cube by the Gaussian quadrature of an arbitrary order.

Large strain by FEM

Journal Articles

  1. V.V.Chekhov. Matrix FEM equation describing the large-strain deformation of an incompressible material // International Applied Mechanics vol. 46, number 10 (2010), pp. 1147–1153.
    (source in Russian: Чехов В.В. Матричное уравнение метода конечных элементов для несжимаемого материала при больших деформациях // Прикладная механика, Т. 46, № 10, 2010, с. 71–77)
  2. V.V.Chekhov. Differentiation of the equations of the finite element method for large strains in the tensor-matrix form // Dopovidi NANU, No.5, 2012, p.72–77.
  3. V.V.Chekhov. Modification of the Finite-Element Method to Apply to Problems of the Equilibrium of Bodies Subject to Large Deformations // International Applied Mechanics vol. 49, issue 6 (2013), pp. 658–664.
    (source in Russian: Чехов В.В. О модификации метода конечных элементов применительно к задачам равновесия тел при воздействии больших деформаций // Прикладная механика, Т. 49, № 6, 2013, с. 37–43)
  4. V.V.Chekhov. Relations for tensor-matrix axisymmetric analysis of large strain by finite element method // Dopovidi NANU, No.4, 2013, p.59–64.

Conference Proceedings

  1. V.V.Chekhov An equation of the Finite Element method for static analysis under large strains. // Proceedings of International Conference "Dynamical Systems Modelling and Stability Investigation", May 22–25, 2001, Kyiv, Ukraine, p. 340.

Prolog programming

Journal Articles

  1. N.A.Sokolov, V.V.Chekhov. Usage of the state space search to improve the envelope of a sparce matrix (in Russian). // Zaporizhzhya National University Herald, 2006, No 1, pp. 116–124.

Current research


  • Development of an experimental application for FEM structural analysis in C++ with the next features/subgoals:
    • tensor-based matrix form of underlying FEM equations,
    • accumulation of current calculation results in a database to enhance efficiency of tensor expressions,
    • use of C++ template-based metaprogramming for enhancement of efficiency of FEM code,
    • xml-based format of input/output files
      (formerly with the assistance of N.Sokolov);
  • Program implementation and investigation of the of a tensor-based FEM equation for large strains (formerly with the assistance of N.Sokolov).
    Some results (dashed or crosses — init.approx): the von Mises truss under no load (all 3 solutions), an inversed cylinder: circular, square.


  • visualizer of 3-bar truss optimization