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1. Abstract

Theoretical consideration of optimization problems for physically nonlinear hyperelastic structures is carried out. The
structures are subjected to a single static “dead” loading, multi-material design approach is analyzed. Structural
materials are supposed to be isotropic, with stress-strain relations being weakly concave. The problems considered are:
mass minimization with prescribed structural stiffness, stiffness maximization with prescribed structural mass, mass
minimization with constrained stresses. Optimality conditions for the problems are analyzed. Generalizations of
Maxwell’s and Michell’s theorems for the considered structures are proved. Some regularities inherent in the third
problem are analyzed using analytical example of 3-rod physically nonlinear truss made of 2 materials.

An algorithm for compliance decreasing in case of prescribed structural mass is proposed. Monotonicity property of the
algorithm is proved. Numerical example is presented, corresponding results are decomposed on a basis of developed
theoretical approaches.
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~ 3. Theoretical consideration .
Theoretical consideration of optimization problems for physically nonlinear hyperelastic (PNH) structures is carried
out. Strains and displacements are supposed to be small. The structures are subjected to a single static “dead” loading.
Several structural materials may be simultaneously used for designing, it is assumed that prior to optimizing it is
indicated which elements should be made of which material, actually the design purpose is optimal sizing. Structural
materials are supposed to be isotropic, with stress-strain relations being weakly concave. Technology constraints on
minimal allowable values of structural parameters are taken into account. The structural potential energy and the total
complementary energy are considered as measures of structural stiffness and structural compliance, respectively.
Buckling effects are neglected. Stress-strain fields are supposed to be uniform “along” variations of design parameters
of structural members.

The first problem considered is the structural mass minimization problem with prescribed structural compliance and
technology constraints. The second one is the structural compliance minimization problem with prescribed structural
mass and technology constraints. Optimality conditions for the problems [1] are analyzed. According to the conditions

the averaged element strain potential energy (1’1 .-) divided by the element density p, should be constant over elements
with passive technology constraints:

(H,)/pi = const (1)
In case of active element technology constraint the above ratio should not exceed the constant.

The third problem considered is the problem of mass minimization with constrained absolute stress values and
technology constraints. Maximal allowable stress value depends on element material.

Generalized multi-material Maxwell’s theorem is presented. The theorem is written as follows: for all PNH

frameworks under a given system of applied forces, P,, acting at points with position vectors ¥, (i=1,....s) the
Jfollowing relation is valid:
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where P, is the force in a tension member of length I, and cross-section area F,, (- P.) is the force in a compressed

member of length |, and cross-section area F,, Z ,Z are sums over the tension and compression members,
!

respectively. For proving the theorem let’s suppose that the following virtual displacement field is kinematically
admissible:
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where e is a small positive number, i, v,6w are the displacements along x, y, z axes, respectively. It is the case when
structural points located into the x=0 plane (or at least a point located in the origin) are fixed. The field is imposed on
real one. Using the kinematic variational principle for PNH structures [2] written in the form of first variation
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we obtain the relation
DY Pl cos’ @, =Y Pl cos’p, =Y (B)(r,), (%)
t ¢ i=1

where @, is the angle between the rod and the x axis, P,,r, are x components of 13, 7 , respectively. Supposing that the

structure is not supported and combining (summing) relations like (5) for y and z axes we finally obtain (2). Note that
relations like (5) may be of help for analysis of supported structures.

In case of structures made of two structural materials (all tension members are made of one material and all
compression members are made of another material) and fully-stressed design (FSD) conditions the following relation
for the structural mass is obtained from (2):
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where p,,0,,p,,0, are the density and the maximal allowable stress level for tension and compression members,
~ respectively.

The generalized Michell’s theorem for the above 2-material structures is proved. The theorem is written as follows: for
all 2-material PNH frameworks S (all tension members are made of one material and all compression members are
made of another material) which equilibrate a given force system within the domain D and have the stresses in all the
tension and compression members o,,0,, respectively, the lightest S*, if exists, satisfies the following condition: there
exists a virtual deformation of the domain D, with strains along the members of S* equal to te, where the sign agrees
with that of the end load carried by the particular member, and such that no linear strain in D numerically exceeds e,
which is a small positive number. The proof of the theorem is based on the formula (6) and the kinematic variational
principle [2]. The virtual deformation is considered as kinematically admissible displacement field variation du* for
both §* and arbitrary S. The potentials of external forces for the both structures corresponded to du * are equal,
therefore the variations of the total strain energies are also equal. Due to the principle and properties of du* we obtain
the following inequality:

(ZP,I, +ZPC£CJ*SZP,I, +Y Pl, (7

where asterisk corresponds to S*. Observing (6) and (7) we obtain that the theorem is proved. It is obvious that S* is
also a minimal volume structure as compared to S, moreover the structure has the minimal total strain potential energy.

The last statement follows from the expression for the energy I of FSD structure:
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where I1,,T1, are the specific strain energies for tension and compression members corresponded to o,,0, ,
respectively. Minimality of the total complementary energy of S* is proved analogously. Therefore, the potential of
external forces of $* reaches its minimal value as compared to S. The potential as a sum of the two total energies is one
more measure of structural compliance but the total complementary energy.

Actually the above theoretical results give rise to a recommendation to designers to choose materials for 2-material
structures keeping in mind FSD conditions and the relation:
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Some regularities inherent in the above third problem are analyzed on a basis of use of a model structure, namely,
physically nonlinear 3-member plane truss made of two structural materials (see Fig.1). The structure is symmetric, rod
2 is made of one material, rods 1 having the same value of cross-section area are made of another one. It is obvious that

due to the strain compatibility condition the rod strains &,,i =1,2 , satisfy the relation
£, =2¢ (10)



where subscripts correspond to rod numbers. Analytical optimal solutions of the considered optimization problem are
obtained. Theoretical analysis of the solutions is performed. It is supposed that nonlinear stress-strain laws for the
above rods have initial linear-elastic parts with some values of the Young module. It is obtained that for certain
combinations of structural parameters the optimal physically nonlinear structure is heavier than the optimal linear-
elastic one (in the latter case the structure is supposed to have the above Young modules).
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Fig. 1. Three-member truss

Let’s restrict the consideration by the obvious case when material #2 is stronger than material #1 and the optimal

linear-elastic structure has active technology constraint in rod 1 and active stress constraint in rod 2. Then the

combinations are the following:

1) the optimal PNH structure has a reversed set of active constraints, namely the structure has active stress constraint
inrod 1 and active technology constraint in rod 2;

2) the optimal PNH structure has active technology constraint in rod 1 and active stress constraint in rod 2, the stress
value of rod 1 in linear-elastic case is greater than the stress value of the rod in the nonlinear case.

It is noted that in case of use of one material for producing the structure the optimal nonlinear one could not be heavier.

It is known that linear-elastic model is widely used for preliminary assessment of rational parameters of PNH
structures, the former model usually results in some mass reserves of the structure to be designed. The performed
analysis improves understanding of physical regularities when using the approach.

4. Algorithms

An algorithm for structural compliance decreasing is proposed. The algorithm is based on the above-mentioned
optimality conditions (1) and the static variational principle for PNH structures [2]. Similar algorithms were proposed
earlier for the case of structures made of one material [3].

One step of the algorithm consists of two sub-steps: forces within structural elements are supposed to be frozen and
new values of structural parameters from minimization of the total complementary energy with prescribed structural
mass are obtained, then strain compatibility conditions are satisfied. During the first sub-step the total complementary
energy is obviously decreased. During the second sub-step the total complementary energy is decreased due to the
static variational principle [2]. Hence we have proved that the algorithm provides monotonous decrease of structural
compliance.

It is indicated that the algorithm may be also used for physically nonlinear structures described by models close to PNH
one. Some variants of the algorithm are discussed.

It is also indicated that FSD approach may be accomplished by using the known stress-ratio type algorithm.

5. Numerical example

Physically nonlinear I-beam structure made of two structural materials is considered (see Fig. 2). In the Figure the
loading of the structure is also demonstrated, namely the end section of the beam is loaded by the force distributed over
the section. Numerical results for optimization of the structure are presented. The caps and the web of the beam are
considered as produced from steel and aluminum, respectively. Maximal allowable stress level in caps is equal to 175



kg/sq.mm, the allowable stress level for web is equal to 50 kg/sq.mm. Stress-strain diagrams for both materials are
approximated by bilinear curves.
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Fig. 2. Model I-beam

- Analysis of the structure is made by the finite element method, the deformation plasticity theory being used for analysis
of inelastic structural deforming beyond the yield limit. The FE model consists of rods and 2D-stress elements, the total
number of the elements is equal to 168 (56 rods and 112 membranes). The stress-ratio type algorithm is used for the
optimization, as well as the above-described compliance decreasing one. Fig. 3 demonstrates final designs (rod areas,
membrane thickness values) obtained. Intensification of dithering intensity corresponds to increase of design parameter
values.
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Fig. 3. Design variants.

Structural mass values obtained respectively are 2.2, 2.15, 2.15 kg for top to bottom. The bottom structure is close to an
FSD one with stresses in caps being equal to 170.4 kg/sq.mm and averaged stresses in membranes being equal to 50.2
kg/sq.mm. Maximal displacement and the total complementary energy of the structure are monotonously decreasing
during the optimization process. Final maximal structural displacement of the bottom structure is 14% less than the
displacement of the elastic-plastic FSD one.



Observing the three structures we can see that there is an effect of some caps degeneration in the sections close to
loaded one. At the same sections edge (top and bottom) membrane elements become stronger than ones close to the
symmetry axis. Actually the elements create something like “additional caps”. The effect is more significant in case of
the linear-elastic FSD structure than in cases of two other ones, this is the reason of larger structural mass of the former
structure.

. The considered structures have a regular relationship between structural mass values of the linear-elastic and nonlinear
structures optimized, namely the linear-elastic FSD structure is heavier than the physically nonlinear FSD one. The
bottom design of Fig. 3 having the same mass value looks preferable due to less compliance value, greater material
concentration in caps and less values of cap stresses.

For the case of 6% less value of the maximal allowable web stress level (47 kg/sq.mm) the obtained designs (rod areas,
membrane thickness values) are presented in Fig. 4. Bottom design in the Figure corresponds to the case of 163.2
kg/sq.mm max allowable stress level in caps, in this case the criterion (1) is satisfied.

FSD, linear-elastic
C

FSD for max allowable I,
elastic-plastic

Fig. 4. Design variants, 6% less value of max allowable stress level.

Structural mass values for the design variants are 2.85, 3.29, 2.26 kg from top to bottom, respectively. Maximal
displacement corresponding to the bottom variant is 22% less than the displacement corresponding to the middle one.

It follows from the Figure that the above-mentioned effect is stronger for the 2 upper design variants than for the
structures of Fig. 3. We clearly see from the 2 upper design variants of Fig. 4.that caps of the whole beam degenerate
with creating “additional caps” from the web material, the behavior being more expressed for elastic-plastic structure.
In the irregular case of Fig. 4 the fully-stressed elastic-plastic structure is noticeably heavier than the linear-elastic one.
The above-made analysis for 3-member truss (namely case 1 at the end of Section 3) gives us a physical explanation of
the result. The bottom design variant also demonstrates a possibility to cure the irregular case by adjusting
(decreasing!) maximal allowable stress level in steel caps. Observing design parameters of the variant we see that it
corresponds to regular case of web degeneration. Moreover we obtain less value of maximal displacement for the
variant.
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